SNBAFILE

2nd LiFe R100 51.2V

100Ah 5.12kWh

KEY FEATURES

- Automotive Grade Cells-16 cell configuration
- Integrated CAN bus RS485 BMS.
- LCD display shows battery information.
- Pre-configured with optimal parameters.
- No other LiFePO4 battery offers this functionality, longevity and warranty at our price.
- Warranted for daily cycling.

BUILT IN PROTECTION

- Over-discharge Protection.
- Temperature Protection.
- Short Circuit Protection.

FREEDOM FROM DEPENDENCE

ONE BATTERY **INSTALLATION**

Best Quality + Best Price = Most Affordable

The REVOV 2nd LiFe R100 is designed to deliver instant, clean and quiet electricity to your home or office. REVOV's 16 cell design using superior automative grade cells improves performance under all loads and extends battery life. The LiFeP04 chemistry and high cycle life of this battery is suitable for a solar DC system where daily cycling is required, and for DC backup functionality.

With a 5kWh capacity, you can start your DC backup system with one battery. Your power assurance system can grow according to your usage patterns and be adaptable to consumption requirements – panels and batteries can be added as you need.

No LiFeP04 Battery offers this functionality with this longevity and warranty at this price.

REVOV 2nd LiFe batteries are environmentally responsible, reducing electronic waste, reusing important materials and enabling the move away from fossil fuels. The product delivers extreme temperature resilience and high energy density and in a low weight form factor that allows rack or wall mounting.

CAN bus ENABLED

2nd LiFe R100 51.2V

100Ah 5.12kWh

SPECIFICATIONS

Nominal Voltage	51.2V
Nominal Capacity	100Ah (at rate of 1C)
Energy	5.12kWh (at rate of 1C)
Max Current	100A
Recommended Recharge	3 Hours at 40A
Boost / Absorption Voltage	55.5V
Float Voltage	54.5V
Discharge cut-off Voltage	48V
Standard charging Current	40A
Recommended Discharge Rate	0.6C
Recommended continuous discharge current	60A
Size: Length x Width x Height	420mm x 480mm x 177mm
Weight	42kg

^{*} LCD Display Screen

OPERATING CONDITIONS

Operating Temperature	7ero to 50°C
Warranty	10 years or 3 500 cycles at 1 cycle per day
DoD	When used properly every day the R100 can be safely discharged to 100% of its rated 100Ah capacity. Battery life is shortened if it is discharged beyond 100Ah.

BUILT-IN PROTECTION

- Over-discharge protection.
- Over-charge protection.
- Temperature protection.
- Short Circuit Protection.

OPTIONAL

- Parallel connection is optional.
- Battery rack or cabinet is optional.

REVOV TECH TIP

Design your installation around the output you require from the inverter. Double that required output to decide on the energy capacity of your batteries. Multiply that output by 4 and divide by average daily sunny hours to guide your planned solar panel capacity.